Australian New Crops Info 2016
Supported by the Rural Industries Research and Development Corporation

Listing of Interesting Plants of the World:

Bryoria fuscescens

 

 

This species name was not found in The Plant List

 

This species has no synonyms in The Plant List

 

Common names:

Horsehair Lichen

 

 

Trends (five databases) 1901-2013:
[Number of papers mentioning Bryoria fuscescens: 123]

 

Bryoria fuscescens.jpg

 

Popularity of Bryoria fuscescens over time
[Left-hand Plot: Plot of numbers of papers mentioning Bryoria fuscescens (histogram and left hand axis scale of left-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box); Right-hand Plot: Plot of a proportional micro index, derived from numbers of papers mentioning Bryoria fuscescens as a proportion (scaled by multiplying by one million) of the approximate total number of papers available in databases for that year (frequency polygon and left-hand axis scale of right-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box)] 

[For larger charts showing the numbers of papers that have mentioned this species over years, select this link; there are links to come back from there]

 

Keywords

[Total number of keywords included in the papers that mentioned this species: 752]

 

2 (1), lichens (28), Air pollution (14), Heavy metals (11), Biomonitoring (10), indicator species (8), Bryophytes (7), Copper (7), Boreal forest (6), Trebouxia (6), alectoria sarmentosa (5), bryoria fuscescens (5), Forest management (5), Lichen (5), Lichen-forming fungi (5), Photosynthesis (5), Algae (4), Antioxidant enzymes (4), Bioaccumulation (4), Epiphytes (4), Epiphytic lichens (4), <ARROW Extinction debt (4), pH (4), Plasma membrane (4), Platismatia glauca (4), Pollution (4), Succession (4), TEM (4), Acid rain (3), Acidic precipitation (3), Air pollution indicators (3), Alkaline dust (3), As (3), Asterochloris (3), Bark acidity (3), Bark chemistry (3), Biomarkers (3), Cell membrane damage (3), Coarse woody debris (3), Community structure (3), Conservation planning (3), Cu (3), Dehydrogenase activity (3), Diversity (3), Finland (3), Forest canopies (3), Hypogymnia physodes (3), Lichen diversity value (3), Lipid peroxidation (3), Macrolichens (3), Malondialdehyde (3), Manganese (3), Mantel test (3), membrane permeability (3), Metal tolerance (3), Metal toxicity (3), Mycobiont (3), Particulate matter (3), Pastoral nomadism (3), Picea (3), Pinus sylvestris (3), Pseudevernia furfuracea (3), Quercus (3), ROS (3), 15N-labeled ammonium nitrate (2), Acid deposition (2), Ammonia (2), Aspen (2), Boreal forests (2), Calicioid species (2), Chla (2), Chlorophyll (2), Chlorophyll a fluorescDOWN>ence (2), Community analysis (2), Community nestedness (2), Continuous cover management (2), critical load (2), Cyanolichens (2), Depsides (2), Depsidones (2), Dissociation constant (2), Dry season (2), Ecological connectivity (2), Ecophysiology (2), ectomycorrhiza (2), Environmental gradient (2), Epiphytic richness (2), Eugenia uniflora (2), Fagus sylvatica (2), forest conservation (2), Forest dieback (2), Fuelwood collection (2), Gas exchange (2), Habitat suitability index (2), Heavy metal tolerance (2)…..

 

[If all keywords are not here (as indicated by .....), they can be accessed from this link; there are links to come back from there]

 

 

Most likely scope for crop use/product (%):
[Please note: When there are only a few papers mentioning a species, care should be taken with the interpretation of these crop use/product results; as well, a mention may relate to the use of a species, or the context in which it grows, rather than a product]

 

bioindicator (79.03), timber (6.21), phytoextractive (2.92), fuelwood (2.70), medicinal (1.20), poison (1.18), fruit (1.13), oilseed/fat (0.70), weed (0.66), ornamental (0.48)…..

 

[To see the full list of crop use/product outcomes, from searching abstracts of the papers that have mentioned this species, select this link; details of the analysis process have also been included; there are links to come back from there]

 

 

Recent mentions of this species in the literature:
[since 2012, with links to abstracts; The references from 1901-2013 which have been used for the trend, keyword and crop use/product analyses below, are listed below these references]

 

Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Bradtka JH, Langbehn T, Werth S and Müller J (2016) Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689-698. http://dx.doi.org/10.1111/ecog.01789

Boddy L (2016) Chapter 11 - Fungi, Ecosystems, and Global Change. In ‘The Fungi (Third Edition)’ (Ed.^(Eds  pp. 361-400. (Academic Press: Boston). http://www.sciencedirect.com/science/article/pii/B9780123820341000116

Jüriado I, Kämärä M-L and Oja E (2016) Environmental factors and ground disturbance affecting the composition of species and functional traits of ground layer lichens on grey dunes and dune heaths of Estonia. Nordic Journal of Botany 34, 244-255. http://dx.doi.org/10.1111/njb.00936

Spribille T, Tuovinen V, et al. (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488-492. http://science.sciencemag.org/cgi/content/abstract/353/6298/488

Esseen P-A, Olsson T, Coxson D and Gauslaa Y (2015) Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecology 18, 26-35. http://www.sciencedirect.com/science/article/pii/S1754504815000926

Higgins NF and Crittenden PD (2015) Phytase activity in lichens. New Phytologist 208, 544-554. http://dx.doi.org/10.1111/nph.13454

Kalinowska R, Bačkor M and Pawlik-Skowrońska B (2015) Parietin in the tolerant lichen Xanthoria parietina (L.) Th. Fr. increases protection of Trebouxia photobionts from cadmium excess. Ecological Indicators 58, 132-138. http://www.sciencedirect.com/science/article/pii/S1470160X15003155

Koivurova M, Leppänen A-P and Kallio A (2015) Transfer factors and effective half-lives of 134Cs and 137Cs in different environmental sample types obtained from Northern Finland: case Fukushima accident. Journal of Environmental Radioactivity 146, 73-79. http://www.sciencedirect.com/science/article/pii/S0265931X1500123X

Lindgren H, Diederich P, Goward T and Myllys L (2015) The phylogenetic analysis of fungi associated with lichenized ascomycete genus Bryoria reveals new lineages in the Tremellales including a new species Tremella huuskonenii hyperparasitic on Phacopsis huuskonenii. Fungal Biology 119, 844-856. http://www.sciencedirect.com/science/article/pii/S187861461500104X

Shrestha G, El-Naggar AM, St. Clair LL and O’Neill KL (2015) Anticancer Activities of Selected Species of North American Lichen Extracts. Phytotherapy Research 29, 100-107. http://dx.doi.org/10.1002/ptr.5233

Asplund J, Sandling A, Kardol P and Wardle DA (2014) The influence of tree-scale and ecosystem-scale factors on epiphytic lichen communities across a long-term retrogressive chronosequence. Journal of Vegetation Science 25, 1100-1111. http://dx.doi.org/10.1111/jvs.12149

Hämäläinen A, Kouki J and Lõhmus P (2014) The value of retained Scots pines and their dead wood legacies for lichen diversity in clear-cut forests: The effects of retention level and prescribed burning. Forest Ecology and Management 324, 89-100. http://www.sciencedirect.com/science/article/pii/S0378112714002485

Hauck M, de Bruyn U, Javkhlan S and Lkhagvadorj D (2014) Forest edge-interior differentiation in the epiphytic lichen diversity of the forest steppe in the Khangai Mountains, Mongolia. J Plant Ecol 7, 287-297. http://jpe.oxfordjournals.org/cgi/content/abstract/7/3/287

Svensson M, Dahlberg A, Ranius T and Thor G (2014) Dead branches on living trees constitute a large part of the dead wood in managed boreal forests, but are not important for wood-dependent lichens. Journal of Vegetation Science 25, 819-828. http://dx.doi.org/10.1111/jvs.12131

Boudreault C, Coxson D, Bergeron Y, Stevenson S and Bouchard M (2013) Do forests treated by partial cutting provide growth conditions similar to old-growth forests for epiphytic lichens? Biological Conservation 159, 458-467. http://www.sciencedirect.com/science/article/pii/S0006320712005174

Dittrich S, Hauck M, Jacob M, Rommerskirchen A and Leuschner C (2013) Response of ground vegetation and epiphyte diversity to natural age dynamics in a Central European mountain spruce forest. Journal of Vegetation Science 24, 675-687. http://dx.doi.org/10.1111/j.1654-1103.2012.01490.x

Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M and Leuschner C (2013) Separating forest continuity from tree age effects on plant diversity in the ground and epiphyte vegetation of a Central European mountain spruce forest. Flora - Morphology, Distribution, Functional Ecology of Plants 208, 238-246. http://www.sciencedirect.com/science/article/pii/S0367253013000352

Hauck M, de Bruyn U, Javkhlan S and Lkhagvadorj D (2013) Forest edge-interior differentiation in the epiphytic lichen diversity of the forest steppe in the Khangai Mountains, Mongolia. J Plant Ecol, rtt033. http://jpe.oxfordjournals.org/cgi/content/abstract/rtt033v1

Hauck M and Lkhagvadorj D (2013) Epiphytic lichens as indicators of grazing pressure in the Mongolian forest-steppe. Ecological Indicators 32, 82-88. http://www.sciencedirect.com/science/article/pii/S1470160X13001088

McMullin RT, Thompson ID and Newmaster SG (2013) Lichen Conservation in Heavily Managed Boreal Forests. Conservation Biology, n/a-n/a. http://dx.doi.org/10.1111/cobi.12094

McMullin RT, Thompson ID and Newmaster SG (2013) Lichen Conservation in Heavily Managed Boreal Forests. Conservation Biology 27, 1020-1030. http://dx.doi.org/10.1111/cobi.12094

Ophof AA, Oldeboer KW and Kumpula J (2013) Intake and chemical composition of winter and spring forage plants consumed by semi-domesticated reindeer (Rangifer tarandus tarandus) in Northern Finland. Animal Feed Science and Technology 185, 190-195. http://www.sciencedirect.com/science/article/pii/S0377840113002162

Paoli L, Fiorini E, Munzi S, Sorbo S, Basile A and Loppi S (2013) Antimony toxicity in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere 93, 2269-2275. http://www.sciencedirect.com/science/article/pii/S0045653513010801

Sun Z, Wang L, Zhou Q and Huang X (2013) Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings. Chemosphere 93, 344-352. http://www.sciencedirect.com/science/article/pii/S0045653513007145

Aragón G, Martínez I and García A (2012) Loss of epiphytic diversity along a latitudinal gradient in southern Europe. Science of The Total Environment 426, 188-195. http://www.sciencedirect.com/science/article/pii/S0048969712004147

Basile A, Sorbo S, Pisani T, Paoli L, Munzi S and Loppi S (2012) Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. &amp; Loeske. Environmental Pollution 166, 208-211. http://www.sciencedirect.com/science/article/pii/S0269749112001303

Hauck M, Javkhlan S, Lkhagvadorj D, Bayartogtokh B, Dulamsuren C and Leuschner C (2012) Edge and land-use effects on epiphytic lichen diversity in the forest-steppe ecotone of the Mongolian Altai. Flora - Morphology, Distribution, Functional Ecology of Plants 207, 450-458. http://www.sciencedirect.com/science/article/pii/S0367253012000503

Johansson O, Palmqvist K and Olofsson J (2012) Nitrogen deposition drives lichen community changes through differential species responses. Global Change Biology 18, 2626-2635. http://dx.doi.org/10.1111/j.1365-2486.2012.02723.x

Perez-Ortega S, Fernandez-Mendoza F, Raggio J, Vivas M, Ascaso C, Sancho LG, Printzen C and de los Rios A (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Ann. Bot. 109, 1133-1148. http://aob.oxfordjournals.org/cgi/content/abstract/109/6/1133

Pukkala T, Sulkava R, Jaakkola L and Lähde E (2012) Relationships between economic profitability and habitat quality of Siberian jay in uneven-aged Norway spruce forest. Forest Ecology and Management 276, 224-230. http://www.sciencedirect.com/science/article/pii/S0378112712002149

Thell A, Crespo A, Divakar PK, Kärnefelt I, Leavitt SD, Lumbsch HT and Seaward MRD (2012) A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy. Nordic Journal of Botany 30, 641-664. http://dx.doi.org/10.1111/j.1756-1051.2012.00008.x

 

 

References 1901-2013 (and links to abstracts):
[Number of papers mentioning Bryoria fuscescens: 123; Any undated papers have been included at the end]

 

Boudreault C, Coxson D, Bergeron Y, Stevenson S and Bouchard M (2013) Do forests treated by partial cutting provide growth conditions similar to old-growth forests for epiphytic lichens? Biological Conservation 159, 458-67. http://www.sciencedirect.com/science/article/pii/S0006320712005174

Dittrich S, Hauck M, Jacob M, Rommerskirchen A and Leuschner C (2013) Response of ground vegetation and epiphyte diversity to natural age dynamics in a Central European mountain spruce forest. Journal of Vegetation Science 24, 675-87. http://dx.doi.org/10.1111/j.1654-1103.2012.01490.x

Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M and Leuschner C (2013) Separating forest continuity from tree age effects on plant diversity in the ground and epiphyte vegetation of a Central European mountain spruce forest. Flora - Morphology, Distribution, Functional Ecology of Plants 208, 238-46. http://www.sciencedirect.com/science/article/pii/S0367253013000352

Hauck M, de Bruyn U, Javkhlan S and Lkhagvadorj D (2013) Forest edge-interior differentiation in the epiphytic lichen diversity of the forest steppe in the Khangai Mountains, Mongolia. J Plant Ecol, rtt033. http://jpe.oxfordjournals.org/cgi/content/abstract/rtt033v1

Hauck M and Lkhagvadorj D (2013) Epiphytic lichens as indicators of grazing pressure in the Mongolian forest-steppe. Ecological Indicators 32, 82-8. http://www.sciencedirect.com/science/article/pii/S1470160X13001088

McMullin RT, Thompson ID and Newmaster SG (2013) Lichen Conservation in Heavily Managed Boreal Forests. Conservation Biology, n/a-n/a. http://dx.doi.org/10.1111/cobi.12094

Sun Z, Wang L, Zhou Q and Huang X (2013) Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings. Chemosphere 93, 344-52. http://www.sciencedirect.com/science/article/pii/S0045653513007145

Aragón G, Martínez I and García A (2012) Loss of epiphytic diversity along a latitudinal gradient in southern Europe. Science of The Total Environment 426, 188-95. http://www.sciencedirect.com/science/article/pii/S0048969712004147

Basile A, Sorbo S, Pisani T, Paoli L, Munzi S and Loppi S (2012) Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. &amp; Loeske. Environmental Pollution 166, 208-11. http://www.sciencedirect.com/science/article/pii/S0269749112001303

Hauck M, Javkhlan S, Lkhagvadorj D, Bayartogtokh B, Dulamsuren C and Leuschner C (2012) Edge and land-use effects on epiphytic lichen diversity in the forest-steppe ecotone of the Mongolian Altai. Flora - Morphology, Distribution, Functional Ecology of Plants 207, 450-8. http://www.sciencedirect.com/science/article/pii/S0367253012000503

Johansson O, Palmqvist K and Olofsson J (2012) Nitrogen deposition drives lichen community changes through differential species responses. Global Change Biology 18, 2626-35. http://dx.doi.org/10.1111/j.1365-2486.2012.02723.x

Perez-Ortega S, Fernandez-Mendoza F, Raggio J, Vivas M, Ascaso C, Sancho LG, Printzen C and de los Rios A (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Ann. Bot. 109, 1133-48. http://aob.oxfordjournals.org/cgi/content/abstract/109/6/1133

Pukkala T, Sulkava R, Jaakkola L and Lähde E (2012) Relationships between economic profitability and habitat quality of Siberian jay in uneven-aged Norway spruce forest. Forest Ecology and Management 276, 224-30. http://www.sciencedirect.com/science/article/pii/S0378112712002149

Thell A, Crespo A, Divakar PK, Kärnefelt I, Leavitt SD, Lumbsch HT and Seaward MRD (2012) A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy. Nordic Journal of Botany 30, 641-64. http://dx.doi.org/10.1111/j.1756-1051.2012.00008.x

Branquinho C, Matos P, Vieira AR and Ramos MMP (2011) The relative impact of lichen symbiotic partners to repeated copper uptake. Environmental and Experimental Botany 72, 84-92. http://www.sciencedirect.com/science/article/pii/S0098847210001954

Hauck M (2011) Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora - Morphology, Distribution, Functional Ecology of Plants 206, 81-90. http://www.sciencedirect.com/science/article/pii/S0367253010001076

Pisani T, Munzi S, Paoli L, Bačkor M and Loppi S (2011) Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere 82, 963-9. http://www.sciencedirect.com/science/article/pii/S0045653510012361

Spagnuolo V, Zampella M, Giordano S and Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicology and Environmental Safety 74, 1434-43. http://www.sciencedirect.com/science/article/pii/S0147651311000546

Bačkor M, Peksa O, Škaloud P and Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicology and Environmental Safety 73, 603-12. http://www.sciencedirect.com/science/article/pii/S0147651309002681

Johansson O, Nordin A, Olofsson J and Palmqvist K (2010) Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytologist 188, 1075-84. http://dx.doi.org/10.1111/j.1469-8137.2010.03426.x

Lommi S, Berglund H, Kuusinen M and Kuuluvainen T (2010) Epiphytic lichen diversity in late-successional Pinus sylvestris forests along local and regional forest utilization gradients in eastern boreal Fennoscandia. Forest Ecology and Management 259, 883-92. http://www.sciencedirect.com/science/article/pii/S0378112709008597

Marmor L, Tõrra T and Randlane T (2010) The vertical gradient of bark pH and epiphytic macrolichen biota in relation to alkaline air pollution. Ecological Indicators 10, 1137-43. http://www.sciencedirect.com/science/article/pii/S1470160X10000555

Nascimbene J, Brunialti G, Ravera S, Frati L and Caniglia G (2010) Testing Lobaria pulmonaria (L.) Hoffm. as an indicator of lichen conservation importance of Italian forests. Ecological Indicators 10, 353-60. http://www.sciencedirect.com/science/article/pii/S1470160X09001149

Nascimbene J, Marini L and Nimis PL (2010) Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. Forest Ecology and Management 260, 603-9. http://www.sciencedirect.com/science/article/pii/S0378112710002732

Sun B-Y, Kan S-H, et al. (2010) Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. Journal of Hazardous Materials 183, 833-8. http://www.sciencedirect.com/science/article/pii/S0304389410009878

Svoboda D, Peksa O and Veselá J (2010) Epiphytic lichen diversity in central European oak forests: Assessment of the effects of natural environmental factors and human influences. Environmental Pollution 158, 812-9. http://www.sciencedirect.com/science/article/pii/S0269749109004801

Ellis CJ and Coppins BJ (2009) Quantifying the role of multiple landscape-scale drivers controlling epiphyte composition and richness in a conservation priority habitat (juniper scrub). Biological Conservation 142, 1291-301. http://www.sciencedirect.com/science/article/pii/S0006320709000469

Hauck M, JÜrgens S-R, Huneck S and Leuschner C (2009) High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances. Environmental Pollution 157, 2776-80. http://www.sciencedirect.com/science/article/pii/S0269749109002176

Hauck M and Javkhlan S (2009) Epiphytic lichen diversity and its dependence on bark chemistry in the northern Mongolian dark taiga. Flora - Morphology, Distribution, Functional Ecology of Plants 204, 278-88. http://www.sciencedirect.com/science/article/pii/S0367253008001242

Hauck M, Jürgens S-R, Huneck S and Leuschner C (2009) High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances. Environmental Pollution 157, 2776-80. http://www.sciencedirect.com/science/article/pii/S0269749109002176

Kytöviita M-M and Stark S (2009) No allelopathic effect of the dominant forest-floor lichen Cladonia stellaris on pine seedlings. Functional Ecology 23, 435-41. http://dx.doi.org/10.1111/j.1365-2435.2008.01508.x

Lättman H, Milberg P, Palmer MW and Mattsson J-E (2009) Changes in the distributions of epiphytic lichens in southern Sweden using a new statistical method. Nordic Journal of Botany 27, 413-8. http://dx.doi.org/10.1111/j.1756-1051.2009.00425.x

Neves NlR, Oliva MA, da Cruz Centeno D, Costa AC, Ribas RrF and Pereira EGo (2009) Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment. Science of The Total Environment 407, 3740-5. http://www.sciencedirect.com/science/article/pii/S0048969709002137

Neves NR, Oliva MA, da Cruz Centeno D, Costa AC, Ribas RF and Pereira EG (2009) Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment. Science of The Total Environment 407, 3740-5. http://www.sciencedirect.com/science/article/pii/S0048969709002137

Pisani T, Munzi S, Paoli L, BaCkor M and Loppi S (2009) Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR. Chemosphere 76, 921-6. http://www.sciencedirect.com/science/article/pii/S0045653509005694

Pisani T, Munzi S, Paoli L, Backor M and Loppi S (2009) Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR. Chemosphere 76, 921-6. http://www.sciencedirect.com/science/article/pii/S0045653509005694

Pisani T, Munzi S, Paoli L, Bačkor M and Loppi S (2009) Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR. Chemosphere 76, 921-6. http://www.sciencedirect.com/science/article/pii/S0045653509005694

Rogers PC, Moore KD and Ryel RJ (2009) Aspen succession and nitrogen loading: a case for epiphytic lichens as bioindicators in the Rocky Mountains, USA. Journal of Vegetation Science 20, 498-510. http://dx.doi.org/10.1111/j.1654-1103.2009.01064.x

Taylor WA and Wellman CH (2009) ULTRASTRUCTURE OF ENIGMATIC PHYTOCLASTS (BANDED TUBES) FROM THE SILURIAN-LOWER DEVONIAN: EVIDENCE FOR AFFINITIES AND ROLE IN EARLY TERRESTRIAL ECOSYSTEMS. Palaios 24, 167-80. http://palaios.sepmonline.org/cgi/content/abstract/24/3/167

Bignal KL, Ashmore MR and Headley AD (2008) Effects of air pollution from road transport on growth and physiology of six transplanted bryophyte species. Environmental Pollution 156, 332-40. http://www.sciencedirect.com/science/article/pii/S0269749108000985

Hauck M and Jürgens S-R (2008) Usnic acid controls the acidity tolerance of lichens. Environmental Pollution 156, 115-22. http://www.sciencedirect.com/science/article/pii/S0269749107006185

Kuki KN, Oliva MA, Pereira EG, Costa AC and Cambraia J (2008) Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. Science of The Total Environment 403, 207-14. http://www.sciencedirect.com/science/article/pii/S0048969708005093

Li H, Miao J, Cui F and Li G (2008) SURFACTANT PROMOTION OF THE INHIBITORY EFFECTS OF CUPRIC GLUTAMATE ON THE DINOFLAGELLATE ALEXANDRIUM1. Journal of Phycology 44, 1364-71. http://dx.doi.org/10.1111/j.1529-8817.2008.00591.x

Muccifora S (2008) Effects of copper on spore germination, growth and ultrastructure of Polypodium cambricum L. gametophytes. Environmental Pollution 153, 369-75. http://www.sciencedirect.com/science/article/pii/S0269749107004277

Paoli L and Loppi S (2008) A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy. Environmental Pollution 155, 383-8. http://www.sciencedirect.com/science/article/pii/S0269749107005507

Policnik H, Simoncic P and Batic F (2008) Monitoring air quality with lichens: A comparison between mapping in forest sites and in open areas. Environmental Pollution 151, 395-400. http://www.sciencedirect.com/science/article/pii/S0269749107002771

Purvis OW, Pawlik-Skowronska B and Simon V. Avery MSaPVW (2008) Chapter 12 Lichens and metals. In ‘British Mycological Society Symposia Series’. (Ed.^(Eds  pp. 175-200. (Academic Press). http://www.sciencedirect.com/science/article/pii/S0275028708800549

Rogers PC and Ryel RJ (2008) Lichen community change in response to succession in aspen forests of the southern Rocky Mountains. Forest Ecology and Management 256, 1760-70. http://www.sciencedirect.com/science/article/pii/S037811270800460X

Andrzej K, Malgorzata R, Maria W and Witold W (2007) Heavy metal sorption in the lichen cationactive layer. Bioelectrochemistry 71, 60-5. http://www.sciencedirect.com/science/article/pii/S1567539407000035

Divan Junior AM, Oliva MA, Martinez CA and Cambraia J (2007) Effects of fluoride emissions on two tropical grasses: Chloris gayana and Panicum maximum cv. Colonião. Ecotoxicology and Environmental Safety 67, 247-53. http://www.sciencedirect.com/science/article/pii/S014765130600128X

Garty J, Tamir O, Levin T and Lehr H (2007) The impact of UV-B and sulphur- or copper-containing solutions in acidic conditions on chlorophyll fluorescence in selected Ramalina species. Environmental Pollution 145, 266-73. http://www.sciencedirect.com/science/article/pii/S0269749106002168

Geiser LH and Neitlich PN (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution 145, 203-18. http://www.sciencedirect.com/science/article/pii/S0269749106002120

Hauck M, Dulamsuren C and Mühlenberg M (2007) Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora - Morphology, Distribution, Functional Ecology of Plants 202, 530-46. http://www.sciencedirect.com/science/article/pii/S0367253007000746

Otnyukova T (2007) Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline. Environmental Pollution 146, 359-65. http://www.sciencedirect.com/science/article/pii/S0269749106002235

Perhans K, Gustafsson L, Jonsson F, Nordin U and Weibull H (2007) Bryophytes and lichens in different types of forest set-asides in boreal Sweden. Forest Ecology and Management 242, 374-90. http://www.sciencedirect.com/science/article/pii/S0378112707000795

Schiefelbein U and Litterski B (2007) Bibliographie der Flechten und lichenicolen Pilze Mecklenburg-Vorpommerns von 1996 bis 2006. Feddes Repertorium 118, 129-60. http://dx.doi.org/10.1002/fedr.200711132

Sparrius LB (2007) Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of The Netherlands. Environmental Pollution 146, 375-9. http://www.sciencedirect.com/science/article/pii/S0269749106002259

Backor M, Pawlik-Skowronska B, Tomko J, Budová J and Sanità di Toppi L (2006) Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycological Research 110, 994-9. http://www.sciencedirect.com/science/article/pii/S0953756206001754

Coppins BJ and Coppins AM (2006) The lichens of the Scottish native pinewoods. Forestry 79, 249-59. http://forestry.oxfordjournals.org/cgi/content/abstract/79/3/249

Ellis CJ and Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. Journal of Biogeography 33, 1643-56. http://dx.doi.org/10.1111/j.1365-2699.2006.01522.x

Guschina IA and Harwood JL (2006) Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 67, 1731-9. http://www.sciencedirect.com/science/article/pii/S0031942206000616

Walker TR, Crittenden PD, Young SD and Prystina T (2006) An assessment of pollution impacts due to the oil and gas industries in the Pechora basin, north-eastern European Russia. Ecological Indicators 6, 369-87. http://www.sciencedirect.com/science/article/pii/S1470160X05000373

Anonymous (2005) Subject index. Fitoterapia 76, 776-91. http://www.sciencedirect.com/science/article/pii/S0367326X05002169

Adriaensen K, Vralstad T, Noben JP, Vangronsveld J and Colpaert JV (2005) Copper-Adapted Suillus luteus, a Symbiotic Solution for Pines Colonizing Cu Mine Spoils. Appl. Envir. Microbiol. 71, 7279-84. http://aem.asm.org/cgi/content/abstract/71/11/7279

Gombert S, Asta J and Seaward MRD (2005) The use of autecological and environmental parameters for establishing the status of lichen vegetation in a baseline study for a long-term monitoring survey. Environmental Pollution 135, 501-14. http://www.sciencedirect.com/science/article/pii/S0269749104004063

Hauck M (2005) Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution. Environmental Pollution 135, 111-9. http://www.sciencedirect.com/science/article/pii/S0269749104003975

Hauck M and Spribille T (2005) The significance of precipitation and substrate chemistry for epiphytic lichen diversity in spruce-fir forests of the Salish Mountains, northwestern Montana. Flora - Morphology, Distribution, Functional Ecology of Plants 200, 547-62. http://www.sciencedirect.com/science/article/pii/S0367253005000757

Kreisel H (2005) Liste der ethnomykologisch und biotechnologisch relevanten Pilze – Literatur – Kunst – Volksmedizin – Pharmazie – Techniken – Drogen. Feddes Repertorium 116, 339-91. http://dx.doi.org/10.1002/fedr.200510078

Mitchell RJ, Truscot AM, Leith ID, Cape JN, Van Dijk N, Tang YS, Fowler D and Sutton MA (2005) A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. Journal of Ecology 93, 482-92. http://dx.doi.org/10.1111/j.1365-2745.2005.00967.x

Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Bayir Y and Halici M (2005) Antioxidant activity, reducing power and total phenolic content of some lichen species. Fitoterapia 76, 216-9. http://www.sciencedirect.com/science/article/pii/S0367326X04002618

Sætersdal M, Gjerde I and Blom HH (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biological Conservation 122, 305-16. http://www.sciencedirect.com/science/article/pii/S0006320704003490

Werth S, Tømmervik H and Elvebakk A (2005) Epiphytic macrolichen communities along regional gradients in northern Norway. Journal of Vegetation Science 16, 199-208. http://dx.doi.org/10.1111/j.1654-1103.2005.tb02356.x

Xiong Z-T and Wang H (2005) Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environmental Toxicology 20, 188-94. http://dx.doi.org/10.1002/tox.20094

Gombert S, Asta J and Seaward MRD (2004) Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of The Total Environment 324, 183-99. http://www.sciencedirect.com/science/article/pii/S0048969703006442

Lehmkuhl JF (2004) Epiphytic lichen diversity and biomass in low-elevation forests of the eastern Washington Cascade range, USA. Forest Ecology and Management 187, 381-92. http://www.sciencedirect.com/science/article/pii/S0378112703003797

Otte V and Rätzel S (2004) Kommentiertes Verzeichnis der Flechten und flechtenbewohnenden Pilze Brandenburgs, Deutschland – zweite Fassung. Feddes Repertorium 115, 134-54. http://dx.doi.org/10.1002/fedr.200311032

Paul A, Hauck M and Langenfeld-Heyser R (2004) Ultrastructural changes in soredia of the epiphytic lichen Hypogymnia physodes cultivated with manganese. Environmental and Experimental Botany 52, 139-47. http://www.sciencedirect.com/science/article/pii/S009884720400022X

Plouffe A, Rasmussen PE, Hall GEM and Pelchat P (2004) Mercury and antimony in soils and non-vascular plants near two past-producing mercury mines, British Columbia, Canada. Geochemistry: Exploration, Environment, Analysis 4, 353-64. http://geea.lyellcollection.org/cgi/content/abstract/4/4/353

Santamaría O, Pajares JA and Diez JJ (2004) Physiological and morphological variation of Gremmeniella abietina from Spain

Variabilité physiologique et morphologique de Gremmeniella abietina en Espagne

Physiologische und morphologische Variation von Gremmeniella abietina in Spanien. Forest Pathology 34, 395-405. http://dx.doi.org/10.1111/j.1439-0329.2004.00380.x

Sipman HJM, Leuckert C, Otte V, Knoph JG and Rux KD (2004) Die Flechten in Willdenows ‘Florae Berolinensis Prodromus’ und ihr Vorkommen im heutigen Berlin. Feddes Repertorium 115, 121-33. http://dx.doi.org/10.1002/fedr.200311031

B.A. Markert AMBaHGZ (2003) Subject index. In ‘Trace Metals and other Contaminants in the Environment’. (Ed.^(Eds  pp. 941-97. (Elsevier). http://www.sciencedirect.com/science/article/pii/S0927521503801571

Garty J, Tomer S, Levin T and Lehr H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environmental Research 91, 186-98. http://www.sciencedirect.com/science/article/pii/S0013935102000579

Hauck M, Paul A, Gross S and Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environmental and Experimental Botany 49, 181-91. http://www.sciencedirect.com/science/article/pii/S0098847202000692

Pereyra MT, Prieto A, Bernabé M and Leal JA (2003) Studies of new polysaccharides from Lasallia pustulata (L.) Hoffm. The Lichenologist 35, 177-85. http://www.sciencedirect.com/science/article/pii/S002428290300015X

Stevenson SK and Coxson DS (2003) Litterfall, growth, and turnover of arboreal lichens after partial cutting in an Engelmann spruce-subalpine fir forest in north-central British Columbia. Canadian journal of forest research. 33, 2306-20.

vanHerk CM, Mathijssen-Spiekman EAM and deZwart D (2003) Long distance nitrogen air pollution effects on lichens in Europe. The Lichenologist 35, 347-59. http://www.sciencedirect.com/science/article/pii/S0024282903000367

Wolterbeek HT, Garty J, Reis MA, Freitas MC and B.A. Markert AMBaHGZ (2003) Chapter 11 Biomonitors in use: lichens and metal air pollution. In ‘Trace Metals and other Contaminants in the Environment’. (Ed.^(Eds  pp. 377-419. (Elsevier). http://www.sciencedirect.com/science/article/pii/S0927521503801418

Agee JK, Wright CS, Williamson N and Huff MH (2002) Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior. Forest Ecology and Management 167, 57-66. http://www.sciencedirect.com/science/article/pii/S0378112701006909

Garty J, Tamir O, Cohen Y, Lehr H and Goren AI (2002) Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. Environmental Toxicology and Chemistry 21, 848-58. http://dx.doi.org/10.1002/etc.5620210423

Shvetsova T, Mwesigwa J, Labady A, Kelly S, Thomas DJ, Lewis K and Volkov AG (2002) Soybean electrophysiology: effects of acid rain. Plant Science 162, 723-31. http://www.sciencedirect.com/science/article/pii/S0168945202000134

Conti ME and Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental Pollution 114, 471-92. http://www.sciencedirect.com/science/article/pii/S0269749100002244

Grube M and de los RÍOs A (2001) Observations on Biatoropsis usnearum, a lichenicolous heterobasidiomycete, and other gall-forming lichenicolous fungi, using different microscopical techniques. Mycological Research 105, 1116-22. http://www.sciencedirect.com/science/article/pii/S0953756208619759

Hauck M, Jung R and Runge M (2001) Relevance of element content of bark for the distribution of epiphytic lichens in a montane spruce forest affected by forest dieback. Environmental Pollution 112, 221-7. http://www.sciencedirect.com/science/article/pii/S0269749100001123

Van Tichelen KK, Colpaert JV and Vangronsveld J (2001) Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist 150, 203-13. http://dx.doi.org/10.1046/j.1469-8137.2001.00081.x

Alvarez Andrés J and Carballal Duràn R (2000) Flora liquenica sobre Quercus robur L. en galicia (NW España)Lichen flora of Quercus robur L. in galicia, NW Spain. Cryptogamie Mycologie 21, 103-17. http://www.sciencedirect.com/science/article/pii/S018115840000107X

Garty J and Friese BMaK (2000) Chapter 9 Trace metals, other chemical elements and lichen physiology: research in the nineties. In ‘Trace Metals in the Environment’. (Ed.^(Eds  pp. 277-322. (Elsevier). http://www.sciencedirect.com/science/article/pii/S0927521500800120

Tarhanen S, Poikolainen J, Holopainen T and Oksanen J (2000) Severe photobiont injuries of lichens are strongly associated with air pollution. New Phytologist 147, 579-90. http://dx.doi.org/10.1046/j.1469-8137.2000.00713.x

Terrón Alfonso A, Álvarez Andrés J and Martínez Piñeiro J (2000) Líquenes saxícolas, terrícolas y muscícolas de la Sierra de Ancares (León-Lugo, NW España)Lichens from the Sierra of Ancares. Cryptogamie Mycologie 21, 119-29. http://www.sciencedirect.com/science/article/pii/S0181158400001111

Uliczka H and Angelstam P (2000) Assessing conservation values of forest stands based on specialised lichens and birds. Biological Conservation 95, 343-51. http://www.sciencedirect.com/science/article/pii/S0006320700000227

Hyvärinen M, Halonen P and Kauppi M (1999) Habitat type and primary colonisation of annual shoots of conifer saplings by epiphytic lichens. Nordic Journal of Botany 19, 505-11. http://dx.doi.org/10.1111/j.1756-1051.1999.tb01234.x

Lavrinenko IA and Lavrinenko OV (1999) Relict spruce forest “islands” in the Bolshezemelskaya tundra - Control sites for long-term climatic monitoring. Chemosphere - Global Change Science 1, 389-402. http://www.sciencedirect.com/science/article/pii/S1465997299000318

Tarhanen S, Metsarinne S, Holopainen T and Oksanen J (1999) Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental pollution., 1.

Tarhanen S, Metsärinne S, Holopainen T and Oksanen J (1999) Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental Pollution 104, 121-9. http://www.sciencedirect.com/science/article/pii/S0269749198001572

Kuusinen M and Siitonen J (1998) Epiphytic lichen diversity in old-growth and managed Picea abies stands in southern Finland. Journal of Vegetation Science 9, 283-92. http://dx.doi.org/10.2307/3237127

Tarhanen S (1998) Ultrastructural Responses of the LichenBryoria fuscescensto Simulated Acid Rain and Heavy Metal Deposition. Annals of Botany 82, 735-46. http://www.sciencedirect.com/science/article/pii/S030573649890734X

Frazer LN (1997) One stop mycology. Mycological Research 101, 102-28. http://www.sciencedirect.com/science/article/pii/S0953756208605900

Holien H (1997) The lichen flora on Picea abies in a suboceanic spruce forest area in Central Norway with emphasis on the relationship to site and stand parameters. Nordic Journal of Botany 17, 55-76. http://dx.doi.org/10.1111/j.1756-1051.1997.tb00290.x

Litterski B (1997) Lichen observations on the island of Cyprus. Feddes Repertorium 108, 463-73. http://dx.doi.org/10.1002/fedr.19971080519

Ohlson M, Söderström L, Hörnberg G, Zackrisson O and Hermansson J (1997) Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biological Conservation 81, 221-31. http://www.sciencedirect.com/science/article/pii/S0006320797000013

Tarhanen S, Holopainen T and Oksanen J (1997) Ultrastructural Changes and Electrolyte Leakage from Ozone Fumigated Epiphytic Lichens. Annals of Botany 80, 611-21. http://www.sciencedirect.com/science/article/pii/S0305736497904807

Juuti S, Norokorpi Y, Helle T and Ruuskanen J (1996) Trichloroacetic acid in conifer needles and arboreal lichens in forest environments. Science of The Total Environment 180, 117-24. http://www.sciencedirect.com/science/article/pii/0048969795049320

Kaitera JA, Helle T and Jalkanen RE (1996) The effect of Alectoria sarmentosa, Bryoria fuscescens, and Bryoria fremontii extracts and usnic acid on the growth of Gremmeniella abietina in vitro. Canadian journal of botany = Journal canadien de botanique. 74, 352-9.

Tarhanen S, Holopainen T, Poikolainen J and Oksanen J (1996) Effect of industrial emissions on membrane permeability of epiphytic lichens in northern Finland and the Kola Peninsula industrial areas. Water, air, and soil pollution 88, 189-201.

Crittenden PD, David JC, Hawksworth DL and Campbell FS (1995) Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytologist 130, 267-97. http://dx.doi.org/10.1111/j.1469-8137.1995.tb03048.x

Garty J, Kauppi M and Kauppi A (1995) Differential Responses of Certain Lichen Species to Sulfur-Containing Solutions Under Acidic Conditions as Expressed by the Production of Stress-Ethylene. Environmental Research 69, 132-43. http://www.sciencedirect.com/science/article/pii/S0013935185710341

Garty J, Kauppi M and Kauppi A (1995) Differential responses of certain lichen species to sulfur-containing solution under acidic conditions as expressed by the production of stress-ethylene. Environmental research. 69, 132-43.

JØRgensen PM, James PW and Jarvis CE (1994) Linnaean lichen names and their typification. Botanical Journal of the Linnean Society 115, 261-404. http://dx.doi.org/10.1111/j.1095-8339.1994.tb01784.x

Honegger R (1993) Developmental biology of lichens. New Phytologist 125, 659-77. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03916.x

Armaleo D and Clerc P (1991) Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Experimental Mycology 15, 1-10. http://www.sciencedirect.com/science/article/pii/014759759190002U

Fritze H (1991) Forest soil microbial response to emissions from an iron and steel works. Soil Biology and Biochemistry 23, 151-5. http://www.sciencedirect.com/science/article/pii/0038071791901287

Cook LM, Rigby KD and Seaward MRD (1990) Melanic moths and changes in epiphytic vegetation in north-west England and north Wales. Biological Journal of the Linnean Society 39, 343-54. http://dx.doi.org/10.1111/j.1095-8312.1990.tb00522.x

Karnefelt I (1987) Cetraria (Parmeliaceae) and some related genera on the African continent. Bothalia. 17, 45-9.

Pentecost A and Rose F (1985) Changes in the cryptogam flora of the Wealden sandrocks, 1688–1984. Botanical Journal of the Linnean Society 90, 217-30. http://dx.doi.org/10.1111/j.1095-8339.1985.tb00381.x

AragÓn G, MartÍnez I and GarcÍa A Loss of epiphytic diversity along a latitudinal gradient in southern Europe. Science of The Total Environment 426, 188-95. http://www.sciencedirect.com/science/article/pii/S0048969712004147

Arhoun M, Barreno E and Ramis-Ramos G Releasing rates of inorganic ions in lichens monitored by capillary zone electrophoresis as indicators of atmospheric pollution. Cryptogamie Mycologie 21, 275-89. http://www.sciencedirect.com/science/article/pii/S0181158400010538

BaCkor M, Peksa Oe, Škaloud P and BaCkorovÁ M Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicology and Environmental Safety 73, 603-12. http://www.sciencedirect.com/science/article/pii/S0147651309002681

Backor M, Peksa O, Skaloud P and Backorová M Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicology and Environmental Safety 73, 603-12. http://www.sciencedirect.com/science/article/pii/S0147651309002681

Basile A, Sorbo S, Pisani T, Paoli L, Munzi S and Loppi S Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. &amp; Loeske. Environmental Pollution 166, 208-11. http://www.sciencedirect.com/science/article/pii/S0269749112001303

Branquinho C, Matos P, Vieira AR and Ramos MMP The relative impact of lichen symbiotic partners to repeated copper uptake. Environmental and Experimental Botany 72, 84-92. http://www.sciencedirect.com/science/article/pii/S0098847210001954

Hauck M Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora - Morphology, Distribution, Functional Ecology of Plants 206, 81-90. http://www.sciencedirect.com/science/article/pii/S0367253010001076

Hauck M, Javkhlan S, Lkhagvadorj D, Bayartogtokh B, Dulamsuren C and Leuschner C Edge and land-use effects on epiphytic lichen diversity in the forest-steppe ecotone of the Mongolian Altai. Flora - Morphology, Distribution, Functional Ecology of Plants. http://www.sciencedirect.com/science/article/pii/S0367253012000503

Johansson O, Nordin A, Olofsson J and Palmqvist K Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytologist 188, 1075-84. http://dx.doi.org/10.1111/j.1469-8137.2010.03426.x

Lommi S, Berglund H, Kuusinen M and Kuuluvainen T Epiphytic lichen diversity in late-successional Pinus sylvestris forests along local and regional forest utilization gradients in eastern boreal Fennoscandia. Forest Ecology and Management 259, 883-92. http://www.sciencedirect.com/science/article/pii/S0378112709008597

Lommi S, Berglund Hk, Kuusinen M and Kuuluvainen T Epiphytic lichen diversity in late-successional Pinus sylvestris forests along local and regional forest utilization gradients in eastern boreal Fennoscandia. Forest Ecology and Management 259, 883-92. http://www.sciencedirect.com/science/article/pii/S0378112709008597

Marmor L, Tõrra T and Randlane T The vertical gradient of bark pH and epiphytic macrolichen biota in relation to alkaline air pollution. Ecological Indicators 10, 1137-43. http://www.sciencedirect.com/science/article/pii/S1470160X10000555

Marmor L, Tõrra T and Randlane T The vertical gradient of bark pH and epiphytic macrolichen biota in relation to alkaline air pollution. Ecological Indicators 10, 1137-43. http://www.sciencedirect.com/science/article/pii/S1470160X10000555

Nascimbene J, Brunialti G, Ravera S, Frati L and Caniglia G Testing Lobaria pulmonaria (L.) Hoffm. as an indicator of lichen conservation importance of Italian forests. Ecological Indicators 10, 353-60. http://www.sciencedirect.com/science/article/pii/S1470160X09001149

Nascimbene J, Marini L and Nimis PL Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. Forest Ecology and Management 260, 603-9. http://www.sciencedirect.com/science/article/pii/S0378112710002732

Ophof AA, Oldeboer KW and Kumpula J Intake and chemical composition of winter and spring forage plants consumed by semi-domesticated reindeer (Rangifer tarandus tarandus) in Northern Finland. Animal Feed Science and Technology. http://www.sciencedirect.com/science/article/pii/S0377840113002162

Paoli L, Fiorini E, Munzi S, Sorbo S, Basile A and Loppi S Antimony toxicity in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere. http://www.sciencedirect.com/science/article/pii/S0045653513010801

Pisani T, Munzi S, Paoli L, BaCkor M and Loppi S Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere 82, 963-9. http://www.sciencedirect.com/science/article/pii/S0045653510012361

Pisani T, Munzi S, Paoli L, Backor M and Loppi S Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. Chemosphere 82, 963-9. http://www.sciencedirect.com/science/article/pii/S0045653510012361

Pukkala T, Sulkava R, Jaakkola L and LÄhde E Relationships between economic profitability and habitat quality of Siberian jay in uneven-aged Norway spruce forest. Forest Ecology and Management 276, 224-30. http://www.sciencedirect.com/science/article/pii/S0378112712002149

Spagnuolo V, Zampella M, Giordano S and Adamo P Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicology and Environmental Safety 74, 1434-43. http://www.sciencedirect.com/science/article/pii/S0147651311000546

Sun B-Y, Kan S-H, et al. Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. Journal of Hazardous Materials 183, 833-8. http://www.sciencedirect.com/science/article/pii/S0304389410009878

Svoboda D, Peksa O and Veselá J Epiphytic lichen diversity in central European oak forests: Assessment of the effects of natural environmental factors and human influences. Environmental Pollution 158, 812-9. http://www.sciencedirect.com/science/article/pii/S0269749109004801

Svoboda D, Peksa Oe and VeselÁ J Epiphytic lichen diversity in central European oak forests: Assessment of the effects of natural environmental factors and human influences. Environmental Pollution 158, 812-9. http://www.sciencedirect.com/science/article/pii/S0269749109004801

 


RIRDC Farm Diversity Website: http://www.farmdiversity.com.au/

 

Rural Industries Research and Development Corporation (RIRDC)
Home Page

RIRDC New and Developing Plant Industries
Home Page

includes publications and project reports

RIRDC New Crop Industries Handbook
530 pages
as pdf download


RIRDC
essential oils, tea tree oil, wildflowers and natives, bioenergy, organic farming


Grateful acknowledgment is made to the following: for plant names: Australian Plant Name Index, Australian National Herbarium http://www.anbg.gov.au/cpbr/databases/apni-search-full.html; ; The International Plant Names Index, Royal Botanic Gardens, Kew/Harvard University Herbaria/Australian National Herbarium http://www.ipni.org/index.html; Plants Database, United States Department of Agriculture, National Resources Conservation Service http://plants.usda.gov/;DJ Mabberley (1997) The Plant Book, Cambridge University Press (Second Edition); JH Wiersma and B Leon (1999) World Economic Plants, CRC Press; RJ Hnatiuk (1990) Census of Australian Vascular Plants, Australian Government Publishing Service; for information: Science Direct http://www.sciencedirect.com/; Wiley Online Library http://onlinelibrary.wiley.com/advanced/search; High Wire http://highwire.stanford.edu/cgi/search; Oxford Journals http://services.oxfordjournals.org/search.dtl; USDA National Agricultural Library http://agricola.nal.usda.gov/booleancube/booleancube_search_cit.html; for synonyms: The Plant List http://www.theplantlist.org/; for common names: http://en.wikipedia.org/wiki/Main_Page; etc.


All information is included in good faith but this website does not warrant or guarantee the accuracy of any information on these pages, nor does the website accept responsibility for any loss arising from the use of this information.  Views and opinions are those of the authors themselves.  Every effort has been made to respect copyright owners' rights. 


Contact: Webmaster, Australian New Crops Website
australiannewcrops@gmail.com
Latest update March 2017 by: ANCW